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Finite systems of hard disks placed in a temperature gradient and in an external 
constant field have been studied, simulating a fluid heated from below. We used 
the methods of nonequilibrium molecular dynamics. The goal was to observe 
the onset of convection in the fluid. Systems of more than 5000 particles have 
been considered and the choice of parameters has been made in order to have a 
Rayleigh number larger than the critical one calculated from the hydrodynamic 
equations. The appearance of rolls and the large fluctuations in the velocity field 
are the main features of these simulations. 
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1. I N T R O D U C T I O N  

Interest in dissipative structures (1) has been increasing in recent years. The 
theory, initially developed for physicochemical systems, has also found 
applications in biological and even social problems. I2) Many of the ideas in 
nonequilibrium thermodynamics originated from earlier work on 
hydrodynamical instabilities and in particular the B6nard problem (e.g., 
Ref. 1, footnote to p. 159): when a fluid layer is heated from below, at some 
critical value of the imposed temperature gradient convection starts and the 
heat is transported across the fluid by a mass flow that is structured in 
space. This is referred to as the Rayleigh-B6nard instability, a phenomenon 
extensively studied since the early experiments by B6nard and the 
theoretical interpretation given by Rayleigh. ~3) The transition to convection 
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has attracted much interest because it is a relatively simple situation in 
which to study the microscopic mechanisms involved in the onset of a 
dissipative structure. 

Whereas the importance of fluctuations in nonequilibrium has often 
been stressed, ~4) a truly microscopic theory is far from complete. Results 
obtained from kinetic theory ~5l are limited to dilute gases. Fluctuating 
hydrodynamics has been used as an alternative ~6-s) to characterize the 
fluctuations that grow when approaching the instability. Th e  experimental 
confirmation of these theories has not yet been obtained, as it seems that 
the observation would be limited to situations very close to the instability 
poin(9) and hence difficult to observe. 

Numerical simulations have been intensively used to investigate non- 
equilibrium states. ~1~ Surprisingly, systems made of a few hundred to a 
few thousand particles appear to reproduce macroscopic behavior. 
Molecular dynamics (MD) experiments have led us to study the properties 
of fluids maintained very far from equilibrium. ~12) In particular, we have 
shown that, even under the extreme constraints that have to be imposed on 
the simulated fluids to obtain sufficient signal-to-noise ratios, these proper- 
ties could be described very well by first-order corrections to local 
equilibrium distributions. 3 The direct simulation methods have been 
applied to the study of long-range correlations that are present in non- 
equilibrium systems: for instance, the temperature fluctuations of a fluid in 
a temperature gradient are correlated all over the system size so that the 
fluid behaves in a very coherent way; the effects that are measured are 
small, but these experiments have permitted confirmation of theoretical 
predictionsJ~4,ts/ 

The simulation of the transition to rolls in heated fluids in the 
presence of an external field had not been done, as it was generally believed 
that the number of particles, as well as the times of integration, were too 
demanding from a computational point of view. The Rayleigh number is 
proportional to the third power of the layer thickness. As the largest 
systems simulated by molecular dynamics are at most equivalent to sam- 
ples of the order of 1000 A in size, one has to increase greatly the con- 
straints to reach values near the critical ones. In our experiments, the tem- 
perature gradient expressed in usual units is as high as 100 million K/cm 
and the acceleration due to the external field is nearly 1011 cm/sec 2 (see 
Table I). Even if these values are obviously not comparable with those of a 
true laboratory experiment, model fluids placed in these situations seem to 

2 Also see the special issue on nonequilibrium fluids in Physics Today (January 1984). 
3 This is truer for thermal than for velocity constraints, as many studies on non-Newtonian 

flows have shown (e.g., Ref. 13). 
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obey the simple macroscopic laws (see Refs. 11-13), and indeed this can be 
understood, as the change in the macroscopic averages remains small over 
distances of a mean free path. This led us to believe in the feasibility of a 
simulation of an atomic fluid showing the onset of convection and to 
finding an answer to the question of the minimum number of atoms 
involved in such a MD convection "experiment." 

In this article we report the first results obtained. The macroscopic 
description of the fluid in the range of parameters chosen would show 
convective transport of heat, and the transition to the roll structure. It 
turns out that the instability occurs even with a very small number of par- 
ticles (less than 10,000). Besides, the fluctuations that we observe in the 
velocity field are very important. The results we present here open the way, 
in our opinion, to a new method of investigation of these questions. 

The article is organized as follows: in the next section, we present the 
model and its properties. Then we describe the simulations done and give 
some of the measured quantities. We then discuss the results and end with 
an outline of the limitations and perspectives of the method, from both 
physical and computational viewpoints. 

2. T H E  M O D E L  

The system is made up of 5040 hard disks placed in a rectangle of 
sides L.~ and L: with L.JL: = 2 - ~ ;  the z axis is chosen parallel to the 
vertical direction. A temperature difference AT is maintained between the 
two horizontal boundaries using a mechanism described below. A constant 
external force acts on the particles, corresponding to a gravitational 
acceleration g pointing in the - z  direction. The units we use are such that 
the disk diameter is 1, as is the disk mass and the upper plate temperature. 
In these units, we have set AT to 9, and g is a priori derived from the 
equality mgL~ = k 8 AT, where kB is Boltzmann's constant, expressing the 
fact that the average increase of kinetic energy of a particle at the hot 
boundary is sufficient to bring it to the top of the system. To discuss the 
choice of the geometrical and force parameters used, we first look at the 
dependence of the Rayleigh number (Ra) characterizing the state of a two- 
dimensional hard-disk fluid heated from below, as a function of density (3) 

Ra = cr A TgL3/vDT (1) 

where c~=(1/V)(OI/7~T)p is the thermal expansion coefficient, v is the 
kinematic viscosity, and D r  is the thermal diffusitivity. The values of the 
transport coefficients are obtained using the Enskog approximation at the 
temperature at z = L J2. Results are plotted in Fig. 1. As can be seen, the 



Ro 

2000 

lOOO 

I I I I . . . .  I J 

o o,1 0,2 0.3 o.~ 0.5 o,6 n 

1190 M a r e s c h a l  a n d  Kestemont  

Fig. I. Rayleigh number (Ra) computed for a hard-disk fluid of 5000 particles in a 
rectangular box with L,/L: = 2 . . ~ .  Temperature difference is 9, and the temperature at L./2 
is taken to be 6. The Ra is proportional to N 3/2. 

Rayleigh number has a maximum for a moderate density around 0.1. This 
is mainly due to the fact that the transport coefficients have a minimum 
around that value. On the other hand, very low density implies a low 
collision frequency. We finally chose the density to be 0.2: the collision 
frequency (16) at a temperature of 6 is F =  1.04N (N being the number of 
particles), so that the mean free path can be estimated to be 1.50. The 
thickness of the layer is 94.02, which is more than 60 mean free paths. The 
typical hydrodynamic time is usually taken to be the time necessary for 
heat to diffuse from bottom to top: here it corresponds to (Dr/L2z) -~ F =  
5 �9 106 collisions. 

Initially, the disks are placed uniformly in the rectangular box. The 
particles are given velocities depending on their positions and chosen from 
the corresponding local Maxwellian distribution, starting from a supposed 
linear temperature profile from the cold to the hot boundary. The evolution 
of the system is then followed in time. Particles move under the influence of 
the external field between collisions, which are instantaneous. Every time a 
disk hits one of the horizontal sides, it is first kept there for a while; it is 
then reinjected in the system with a velocity chosen from an equilibrium 
distribution function at the local wall temperature. The time of reintro- 
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Table I. S i m u l a t i o n  Parameters a 
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A T  g T(z = L J2)  N,. D r v 

4 0.05 3 17 6.77 2.98 
5 0.06 3.9 13 7.72 3.4 
5 0.07 3.9 12 7.72 3.4 
9 0.09 6.2 35 9.74 4.28 

" Listed, respectively, are the reservoir temperature difference, the amplitude of the external 
force, the measured temperature at z = L : / 2 ,  the number of collisions performed in the 
simulatio~ (in millions), the values computed for the thermal diffusitivity, and the kinematic 
viscosity. (~6~ For all our runs, the ratio of the thermal energy to the energy of viscous 
dissipation of a roll is kBT/'v2L, n=O.O18, as compared to 10 -9 in typical laboratory 
experiments. 

duction is such that the frequency is nearly constant and that incident 
fluctuations are absorbed at the boundary, This mechanism is probably not 
very important since, at most 3-4 particles are so "frozen" on a given wall. 
The sign of the tangential component of the velocity is conserved. This is in 
order to modify as little as possible the flow patterns. The vertical sides of 
the box are specularly reflecting walls: preliminary runs had indeed shown 
that periodic boundary conditions in the horizontal direction are not 
favorable to the onset of stable, long-lived structures. 

All the parameters for the runs done are listed in Table 1: in all cases 
the Rayleigh number is approximately 1800. If we convert to more usual 
units, and set the average temperature to be the room temperature, the 
atomic diameter to be 3/~, and the thermal speed to be 1500 m/sec, the 
parameters of the last line of Table I refer to a simulation of a fluid 
experiencing a temperature gradient of 150.106K/cm and an external 
acceleration of 6 .10  H cm/sec 2, and the total duration of the run lasts for 
5 - 10 9 sec. 

3. THE S I M U L A T I O N S  

The system is divided into 20 by 50 cells. In each cell, one computes 
the time average of the velocity and of the number of particles. The time 
step is one-tenth of the unit time, i.e., one-fifth of the relaxation time. 
Figures 2-11 describe the velocity fields obtained as the average velocity 
times the mean number of particles in each cell, and their evolution in time. 
The corresponding arrows are normalized for each graph. In each MD 
experiment, the first 2 million of collision are not taken into account, as 
there is a violent transient taking place, with important variations of the 
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Fig. 2. Initial velocity field for A T =  9 and g = 0.09. 
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Fig. 3. Result corresponding to t = 340 after the average has started (N<, = 1.7. t0°). 
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total energy and momenta,  through exchanges with thermal boundaries 
and between kinetic and potential energy during the initial evolution of the 
system toward a stationary state. Figures 2-7 correspond to a particular 
run at different times. In Fig. 3 we represent the velocity field for t = 340: 
this corresponds to 1.8 million collisions, or 700 collisions per particle. One 
already sees a vortex at the right of the box, with a flow going downward 
near the x = L~ boundary. At t = 430, a second roll starts to form at the left 
of the first one. The highest cell velocities at that time correspond to a 
velocity per particle around 0.5; this is to be compared to the mean thermal 
velocities, ranging from 1.4 to 4.5. From t =  700 to t = 2 7 2 0  the rolls 
become more and more regular and they extend progressively from the 
right to the left of the box. Approximately 5000 collisions per particle have 
taken place, for a total duration roughly equal to three diffusion times. 

If we continue to follow the system in time, then, progressively, the 
structure fades out and other vortices are created as can be seen in Fig. 7. 
This is probably due to large fluctuations in the system near the thermal 
boundaries, which compete with the existing rolls. Figure 8 shows the 
appearance of a new structure with inverted flows. This occurs after a time 
interval roughly equal to the horizontal diffusion time. 

In a series of other experiments, we decided to see what the effect of a 
change in the external parameters could be. Figures 9-11 give the velocity 
patterns observed for smaller values of the gravitational field and of the 
temperature gradient. In these new cases, one no longer has the same very 
well-defined convective cells, although spatial structure in the fluid remains 
partially present. It is to be noted that, in the first experiment as well as in 
the following ones, the Rayleigh number  is still of the same order, i.e., 1800. 
We probably are very near the critical point, which could explain the long- 
time disappearance of the rolls in one experiment, and the difficulty of 
establishing a stable structure in the others. 

8 2 2 / 4 8 / 5 - 6 - 1 6  
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The measurement of the mean number density is simple, although a 
question remains as to the minimum size required for the cell in which it is 
made; one has to keep in mind that we are dealing with "semimacroscopic" 
structures. To be able to see the flows, if present, we were obliged to chose 
a small enough cell size, which by no means is macroscopic. Until bigger 
systems become tractable by numerical simulation, it is not possible to 
make another choice. For the local temperatures, the difficulty is twofold. 
One is confronted with the problem of the small size of the cell and also of 
the fluctuations, over large time scales, of the local drift velocity. Indeed, 
the usual definition of temperature is given by the formula 

kBT~?=(i/(N~-l)  ~ m/2(v,-u~) 2) (2) 

where c~ is the cell index, and ( . . - )  denotes a time average. The instan- 
taneous cell velocity is 

u~ = 1/N~ ~ v, (3) 
i ~ c t  

with N~ the number of particles in the a cell, N~=Y.i~ 1, and vi is the 
velocity of particle i. Results obtained using Eq. (2) are shown in Fig. 12b, 
where they are compared with a calculation of the local temperature using 
the equation of state 

k B T (2~ = p(1 - nrc/4)2/n [ 1 + (n~)2/128 ] (4) 

This equation is known to correctly reproduce equilibrium simulation 
results in the range of density we are dealing with. (~7J In Eq. (4), the values 
for the pressure p and the number density n are obtained by measurements 
in 20 horizontal slices, each one containing on the average Ns = 250 par- 
ticles. This large number of particles associated with the local measure of 
the pressure is important in the sense that the result is much less dependent 
on the existence of local currents. The pressure profile is shown in Fig. 12a 
together with the profiles of the local number density and kinetic energy of 
the particles given by 

kBT~ 3~= 1/Ns ~ my2~2 (5) 

Equation (5) can also be used to measure the local temperature provided 
we correct it by subtracting the kinetic energy of the local flow, m/2(u,) 2. 
This correction, however, is of little effect and the difference between the 
three possible expressions for the temperature remains, essentially due to 
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the large fluctuations in the velocity field. The existence of such important 
fluctuations is confirmed by Figs. 9-11, where the velocity fields that 
develop in the absence of stable structured states are shown. From these 
figures, it is obvious that small whirpools exist anyway in the system and 
they remain present for times of the order of the characteristic 
hydrodynamic time. These velocity fluctuations can also be directly 
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Fig. 12. (a) Number density, pressure, and temperature as functions of the z coordinate for 
the run where ,~T=9 and g=0.09. (b)The temperatures obtained using Eqs. (5) (upper 
curve), (4), and (2) (lower curve), respectively. 
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measured: the mean square displacement [ ( ( n u )2 )  - (g/U)2] 1/2 is of the 
same order of magnitude as (Inu]) .  

The pressure profile is linear, even near the upper wall, where the 
boundary layer is more pronounced than near the lower plate. This is also 
shown by Fig. 13, where the measure of the local heat flux is given as a 
function of the altitude: the kinetic part of this heat flux is, as usual, given 
by 

kin)~ = ( 1 i ~  ~ -- U~)2(Vzi- Uz~))" (6) (Jqz \ /V~ m/2(vi 

whereas the potential part refers to energy transfer at collisions. This 
definition of the heat flux does not take into account energy transport 
associated with mass flux. The maximum in the heat flux which is observed 
near the boundaries is then interpreted as the impossibility for mass trans- 
port to take place in the z direction in the vicinity of the thermal plates. 

This boundary layer has also some effect on the velocity distribution 
function: the moment ratio (v2)2/{v 4) measured as a function of z in the 
AT---9 run does not differ by more than 1% from its gaussian value (1/2) 
in the bulk. Near the lower plate it differs by 2 % and near the upper boun- 
dary the difference is nearly 10%. In addition, it extends over one-fifth of 
the system thickness, which corresponds to the more pronounced variation 
of the number density (Fig. 12a). 

/ 

(J'qz) 

Fig. 13. 

0,2 

0'I I ;), 

0 Lz 
Heat flux profiles for different gradients. The different A T are, respectively, 4, 5, 

and 9. 
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4. D I S C U S S I O N  

The results presented here confirm that the macroscopic 
hydrodynamic description already applies at distances of a few mean free 
paths and times of the order of the molecular characteristic times. 
Equilibrium simulations had already shown, e.g., that density fluctuations 
in a fluid of a few hundred particles could be understood on the basis of 
linear hydrodynamic equations. More recent work has shown that direct 
simulations of systems far from equilibrium could also be simulated by 
assemblies of a few hundred to a few thousand particles: it was, however, 
believed that a system size of at least 105 particles was necessary to 
simulate hydrodynamic instabilities. Not so! The first conclusion that we 
can draw from our simulations is that systems of 5000-10,000 particles are 
able to display the onset of convection in a fluid heated from below. This is 
important, as systems of that size can easily be studied on modern super- 
computers. We are aware, however, that a more precise comparison has to 
be made with macroscopic results before MD can be safely used to model 
these phenomena. This is still in progress. 

With respect to laboratory experiments or to macroscopic numerical 
simulations, molecular dynamics permits us to extend the domain of 
investigation. Indeed, fluctuations are not present in the macroscopic 
description and we know they play an important role in the approach to 
instability, but only in a narrow region near the critical point and yet 
unobservable in laboratory experiments. Of course, in MD, the magnitude 
of the constraints that have to be imposed on the fluid are orders of 
magnitude higher than realistic ones. However, we are still in a region 
where a simple linear relation between thermodynamic fluxes and forces is 
now known to hold, that is, these constraints can still be considered as 
perturbations with respect to a local equilibrium description. The picture 
that we gain of what happens on a microscopic scale near an instability is 
that of a competition between the thermal fluctuations and the velocity 
fluctuations, which tend to become structured. If the constraint is 
sufficiently large, the study of these phenomena is easier by molecular 
dynamics, because there the ratio of the thermal noise to the heat 
dissipated by the rolls is much larger than in true laboratory experiments. 

Limitations in precision are due to the small size of the cells in which 
the measurements are done. Larger systems have to be considered. This is 
also the case if we want to reach higher values of the Rayleigh number, 
where turbulence sets in. The Ra is proportional to N 3/; in our two-dimen- 
sional systems. If we want to keep a nearly constant density, we have to 
take into account the dependence we impose between the external field and 
the size of the system. This then gives us a Rayleigh number proportional 
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to N. For example, Rayleigh numbers of order 50,000 will require systems 
composed of about 105 particles. Such simulations may have to wait for a 
new generation of computers: although they are at present technically 
possible, they may be too costly with respect to computer time. 

Recently, an interesting approach has been developed using the so- 
called "cellular automata" models. Simplifying as much as possible the 
underlying atomic dynamics, they have proved successful in displaying 
some turbulent behavior. ~8) The behavior of these models is much easier to 
follow and much faster and systems of several millions of particles can be 
studied. However, they have not yet proved useful for systems under ther- 
mal constraints. Still another approach, more interesting for temperature- 
dependent phenomena, is the direct simulation method of the Boltzmann 
equation. (19) It is, however, limited to dilute gases where the Rayleigh 
numbers for the same N systems are much smaller. The extension of similar 
methods to the moderately dense fluids would make them competitive with 
MD. 
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